90 research outputs found

    Transition to chaos in random neuronal networks

    Full text link
    Firing patterns in the central nervous system often exhibit strong temporal irregularity and heterogeneity in their time averaged response properties. Previous studies suggested that these properties are outcome of an intrinsic chaotic dynamics. Indeed, simplified rate-based large neuronal networks with random synaptic connections are known to exhibit sharp transition from fixed point to chaotic dynamics when the synaptic gain is increased. However, the existence of a similar transition in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work we investigate rate based dynamics of neuronal circuits composed of several subpopulations and random connectivity. Nonzero connections are either positive-for excitatory neurons, or negative for inhibitory ones, while single neuron output is strictly positive; in line with known constraints in many biological systems. Using Dynamic Mean Field Theory, we find the phase diagram depicting the regimes of stable fixed point, unstable dynamic and chaotic rate fluctuations. We characterize the properties of systems near the chaotic transition and show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as a network with Gaussian connectivity. Interestingly, the critical properties near transition depend on the shape of the single- neuron input-output transfer function near firing threshold. Finally, we investigate network models with spiking dynamics. When synaptic time constants are slow relative to the mean inverse firing rates, the network undergoes a sharp transition from fast spiking fluctuations and static firing rates to a state with slow chaotic rate fluctuations. When the synaptic time constants are finite, the transition becomes smooth and obeys scaling properties, similar to crossover phenomena in statistical mechanicsComment: 28 Pages, 12 Figures, 5 Appendice

    Classification and Geometry of General Perceptual Manifolds

    Get PDF
    Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination requires classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry revealing a remarkable relation to the mathematics of conic decomposition. Novel geometrical measures of manifold radius and manifold dimension are introduced which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including L2 ellipsoids prototypical of strictly convex manifolds, L1 balls representing polytopes consisting of finite sample points, and orientation manifolds which arise from neurons tuned to respond to a continuous angle variable, such as object orientation. The effects of label sparsity on the classification capacity of manifolds are elucidated, revealing a scaling relation between label sparsity and manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from neuronal responses to object stimuli, as well as to artificial deep networks trained for object recognition tasks.Comment: 24 pages, 12 figures, Supplementary Material

    Globally Gated Deep Linear Networks

    Full text link
    Recently proposed Gated Linear Networks present a tractable nonlinear network architecture, and exhibit interesting capabilities such as learning with local error signals and reduced forgetting in sequential learning. In this work, we introduce a novel gating architecture, named Globally Gated Deep Linear Networks (GGDLNs) where gating units are shared among all processing units in each layer, thereby decoupling the architectures of the nonlinear but unlearned gatings and the learned linear processing motifs. We derive exact equations for the generalization properties in these networks in the finite-width thermodynamic limit, defined by P,Nβ†’βˆž,P/N∼O(1)P,N\rightarrow\infty, P/N\sim O(1), where P and N are the training sample size and the network width respectively. We find that the statistics of the network predictor can be expressed in terms of kernels that undergo shape renormalization through a data-dependent matrix compared to the GP kernels. Our theory accurately captures the behavior of finite width GGDLNs trained with gradient descent dynamics. We show that kernel shape renormalization gives rise to rich generalization properties w.r.t. network width, depth and L2 regularization amplitude. Interestingly, networks with sufficient gating units behave similarly to standard ReLU networks. Although gatings in the model do not participate in supervised learning, we show the utility of unsupervised learning of the gating parameters. Additionally, our theory allows the evaluation of the network's ability for learning multiple tasks by incorporating task-relevant information into the gating units. In summary, our work is the first exact theoretical solution of learning in a family of nonlinear networks with finite width. The rich and diverse behavior of the GGDLNs suggests that they are helpful analytically tractable models of learning single and multiple tasks, in finite-width nonlinear deep networks
    • …
    corecore